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The influence of slight camber of the middle line of a transverse section on the natural 

vibrations frequency and mode of an infinitely long plate, clamped at the endfaces, which 

is vibrating under plane strain conditions, is examined on the basis of perturbation theory 

p-41 in the speciat case when some frequency of vibration of the uncambered plate is 
double. The initial system is degenerate FZ], a “small imperfection can cause a Large 

effect” for it ( &if. Vol. 1. Sect. 149). The problem under consideration is a particular 
case of the problem of the influence of a small change in shape on the vibrations of a 

shelf having multiple natural frequencies. 

A supplement to an assertion of the author of [S] on the separation of natural shell 
vibrations into quasi-transverse and quasi-tangential is also contained herein. 

I, To determine the mode and frequencies in the case under consideration, we have 
from the general equations of shell vibrations [S] 

(~‘*‘$-1C,A 0) -i_ *” A@‘) (v, u?) = h (U, W) 0.Q 
A@f = ii “*j<“’ fi v=O, I,2 i, j=1,2 

Let us present expressions for the nonzero elements of the matrix operators At@ 



178 Il. 5. Tsel’nik 

Here U, w are the tangential and normal displacements to the middle line of the plate 

cross section, sg is the arclength (Fig. 1) along the middle line, h is half the plate thick- 
ness, k, is the curvature of the middle line of the cross section. 

We have the following expression for the vibration frequency 0 : 

.S = ‘lz 
The bbundary conditions are the following: 

S=-Vz 
Fig. 1 

v (- l/J = v (l/J = w (- l/s) = (1.2) 

= w’ (- l/J = w (V2) = w’ (l/s) = 0 

It is considered throughout that the vectors (u, W) belong to a Hilbert space of vector- 
functions with the scalar product ( [6], pp. 19, 27) 

‘12 ‘iz 

and hence the operators A (‘) (t he boundary conditions (1.2)) are self-adjoint. 
Let us introduce eigenvalues and normalized eigenvectors of the operator A@) corre- 

sponding to the longitudinal vibrations of a rod 

h om = (mn)2, (VW, 0) (m = 1, 2, 3 I...) 

and the transverse vibrations of a rod 

a& = ‘/&,2Pk4, (0, W,k) (k = 1, 2, 3,...) 
As is known 

toe (pk) ch (w) = i, Pk = (k + ‘I& n 
For some m and k let 

&m=hOk==jlo (1.3) 

A two-dimensional proper subspace Lho of the operator A@) corresponds to the eigen- 

value h,; as the basis in this subspace we select the vectors 

The matrix 
Xl = (umn, O), xz = (0, wok) 

(1.4) 

corresponds to the operator A(r) in the subspace Lb. 

It has been assumed in the derivation of (1.4) that the function x “does not spoil” 
the possibility of integration by parts in (1.4) with the terms outside the integral vanish- 
ing because of the boundary conditions (1.2) (analogous requirements are imposed on ?c 

in verifying self-adjoin~ess). 
For small’0 we seek the solution (1.1) in the form 
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(v,~)=~o+~(~l,~~)+*2(~z,w2)+... 
~=~o+w,+*Lh,+.*., u,=a~~+B~2 (1.5) 

We henceforth limit ourselves throughout to seek vectors u0 and the first nonzero cor- 

rections to h, by considering the parameter q “sufficiently small”. If a f ol we have 

h, = *a, U/B=41 (1.6) 

Let a = 0. Seeking the solutions for which the representation (1.5) is valid as before, 

we set v = $v” (another possibility is to use the substitution w = ylu*), then we obtain 
instead of (1.1) 

where 
(Bf@) + *s By (vo, W) = h (uo, Eu) 

~(~~=~b~~~‘~ll v=O,i i,j=l,Z 

The nonzero elements bij are 

If 4 = 0, then hois a double eigenvalue of the operator B(O), to which the orthonor- 
malized eigenvectors g,, g2 correspond 

g, = (votnt 0)~ & = p (PO, utakh p = (1 + (&YP))~' 

where p. is a solution of the equation 

POD+ &PO = (x WJ’ - y* h*2 XwO~ot (= p) 

with the boundary conditions taken for u, and such that 

(Porno,) = 0 

If a = 0, then J,, is also a double eigenvalue of the operator (B(~?* conjugate to B(O) 

The orthonormalized eigenvectors of the operator (B(O))* corresponding to ho, are: 

el = Y (vom, ro). es = (0, wok), y = (1 + (rO.~o))-‘/~ 

IIere rg is the solution of the equation 

I/&** PO wu - h *To = 3c vam’ - ‘/&,a (x v8rnY’ (= rf 

with boundary conditions for w, which is orthogonal to wok. 
Associated vectors for eigenvectors of the operator .B’@f are missing. On the basis of 

results in [4] (pp.61-62), we seek for small 9 

(8, w) = uo + 92 (U1O, WI*) + 94 (us*, wz+1 + em* 
h = ho + ?$‘2h, + +*n*. . * , IL* = CcOg~ + p g, 

The quantities h, are eigenvalues. and u. the corresponding eigenvectors of the opera- 

tor C in a two-dimensional subspace with basis gl, g, such that the matrix 

C= H T-l (B(l) gl- el) ye1 (IS(‘) g...el) 

0 p-l (I$‘) g, - e2) I 
corresponds to it in this basis. 

We have ‘h % 

h 
h2 

2l = r-1 (BQ) gl. el) = $- 
s [(=$fnYla 6-k - f 

rro iC.4 

--‘A -‘I* 
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If one of the quantities A, turns out to be zero, then to obtain the appropriate first cor- 
rection to the eigenvalue 1, further analyses are required. If h,r = A,,, the determination 
of no from an analysis of the eigenvectors of the operator C is not always possible. Both 

these cases require futher analysis, and are not considered herein. 

In all the other cases the eigenvectors corresponding to &r, I,, are 

(0, & = f%m, 0) + * (0, (Yi*F (A,, - b,,) -I (Bfr)g,‘e,)ioo/? f r(J + . . . 
(0% t”)z = (9% wok) -!- +’ if?&-’ (“hzz - &ad -’ (B%,4 %m + PO, 0) + ..s 

Let the panel curvature 1 1 R be constant, then x = 1, 9 = I / R; if n, k are of dif- 
ferent parity, and k > m, then 

U Z (- #mtkc’)/24 1/T n/k 

The eigenvectors (uo,,,, W@) are taken thus: 

-r/r(sin (mns), co.5 (pks)), 
n(oos (mns), sin (p&S), 

m = 2m’, m’ = 1, 2, 3 ,... 
m = 2m’ - 1, m’ = 1, 2, 3,... 

Since a # 0, then (1.6) is valid. Now, if the parity of m, k is identical, then a = 0; 
limiting ourselves to the case of even m, k under the condition k > m, we obtain 

a 3r s 1 -E (m i k) (, A,, G - 3 (RZ j k) 2 

the corresponding vibration modes go over for $ 4 0 to pure transverse, and pure tan- 

gential. 
Problems analogous to that considered above, for shells of sufficiently general form, 

which have multiple vibration frequencies, are also expediently solved on the basis of 

perturbation theory. 
In those cases when the degeneration is complete, or due partially to symmetry, the 

simplifications induced by taking account of the symmetry of the unperturbed and per- 
turbed problems should be used ( [7], Sect. 20, 22 ; [8], Chap. 80). 

There are certain analyses for systems whose degeneration is due to symmetry in fl] 
(Vol. 1, Sect. 209, 2‘21) ; Rayleigh uses the principle of stationarity of the frequencies. 

The experiments in [9] can be illustrations of these analyses. 
Let us note that in the case of a shell with multiple frequencies the vibration modes 

can have some peculiarities ( p], @O].Chap.4,lJl-151). 

2. It is asserted in [s] that the natural vibration modes of shells (under the specific 
conditions mentioned in Es]) are subdivided into quasi-transverse and quasi-tangential. 

The cases examined above. when the transverse and tangential vibrations are superposed 
in a 1:1 relationship. show that this is not always the case. Other analogous examples 
can be obtained as follows. Let us consider axisymmetric natural vibrations of a circular 

cylindrical shell. We have (DC”) + oo(l)) (U, w) = q (IL, w) 

D(Y) zzz 11 c&j(“) 11 v=o,1 i, j=2,2 

(2.2.1) 
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Here u, w are the displacements along and normal to the generator, s is the arclength 
along the generator, R the shell radius, h half its thickness, and the quantities p, o, 
o, E are the same as in Sect.1. We use the notation 

’ ‘ok 0m’ 
(m, k = 1,2,3,. . .) 

to denote the simple eigenvalues of the operator D(O) corresponding to pure tangential 

and pure transverse vibrations, respectively. For some m, k let 

q ‘ok om= 
(2.2) 

then for sufficiently small o the displacement vector, in a first approximation, is equal 

(ccuam, F%,k), where a, fi are not simultaneously zero in the general case. 
Let us examine specific examples. 

1. A shell is clamped at the endfaces (L = 2 / R) 

u (0) = u (L) = w (0) = zd (0) = In (L)= w’ (L) = 0 

Condition (2.2) yields 
(mn / L)2 = 1 + 1/&,2 (pk / L) ’ 

(2.3) 

If m, k are of different frequency, then a / B =f 1. When the parity of m, k is the 

same, the analysis can be conducted analogously to the analysis for a = 0 in Sect. 1. 
2. Shell supported at the endfaces 

u’ (0) = u’ (L) = w (0) = w” (0) = w (L) = W” (L) = 0 

Flsgge 1161 found the following solutions for this case: 

u = a cos (nnz / L), w = b sin (nnz / L) (n = 1, 2, 3, . ..) 

Condition (2.2) yields 
(mn I L)2 = 1 + 1/3k,2 (kn / L)” 

If m # k, then as o -+ 0 the limit values of the normalized eigenvectors are 

1;Ti (co9 (mnz /L), O), v/z (0, sin (knz / L) 

Now, let m = k 
(2.4) 

Fig. 2 

(kn / L)2 = 1 + ‘/sk*a (kn / L)* 

In this case the exact solution can be written as 
(2.5) 

4 = (kn / L) 2 [i + o (L / kn)], a / p = + 1 

Because of the smallness of h+ we can select L s kn such 

that (2.5) will be satisfied. and the appropriate modes with 
the number of half-waves k will be a superposition of tangen- 

tial and transverse vibrations in a “one to one” relationship. 
However, as L increases the shell “transforms” sufficiently 
rapidly into a thin-walled rod. 

Equation (2.5) also has the root 

k z )/jL (nk,)-1 

The corresponding solutions of the system (2.1) can no longer 

be considered as the solutions defining the frequencies and 
modes of shell vibrations. However, examining such solutions, 

an interesting regularity can be observed. 
For some L, ke2(0) and k (large), let (2.5) be satisfied, then 

a/B = f 1. However, with only a small change of ks2, the 
eigenvectors of the system (2.1) become close to one of the 
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vectors (2.4) almost immediately. Fig. 2 shows the change 

e/P for h,2>h.2(01, 8/r for h*“<h12(0) 

for one of the branches of the solution when h,’ . 1s altered in the neighborhood of h,2(“) 
and (n / L) = 1, /z,‘(‘), IO”, k = 173 

In connection with the character of the curve in Fig. 2, see [l] (Vol. 1, p. 90). If k = 1, 

the appropriate curves are almost horizontal. By varying L (for h,2=h,2(0)) we obtain 
an analogous character of the dependence a#=f(is) (if h+” and I are changed simul- 
taneously, the effect in Fig. 2 may not even be obtained). 

In general, if the natural vibrations for some shell are subdivided, as is assumed in [5], 
into quasi-transverse and quasi-tangential, the possibility of “binding” these two kinds 
of vibrations together should not be lost sight of. Such a binding together can be due to 

the closeness between frequencies of some vibration modes of both kinds. 

BIBLIOGRAPHY 

1. Lord Rayleigh, Theory of Sound (Russian translation). Vol. 1, 2 Moscow, Gos- 
tekhizdat, 1955. 

2. Shubin, S., Some problems of the theory of perturbations of linear oscillatory 
systems. Zh. Prikl.Fiz., Vol. 7, N”2, 1930. 

3. Riesz, F. and Szekefalvi-Nagy, B., Lectures on Functional Analysis, 

Moscow, IIL, 1954. 

4. Vishik. M. I. and Liusternik, L. A., Solution of some problems on per- 

turbations in the case of matrices and self-adjoint and non-self-adjoint dif- 

ferential equations. Usp. Matem. Nauk, Vol. 15, N’3, 1960. 
5. Goldenveizer, A. L,, Qualitative analysis of free vibrations of an elastic thin 

shell. PMM Vol.30, N86, 1966. 

6. Moran, C., Methods of Hilbert Space. Moscow, “Mir”, 1965. 

7. Fermi, E., Quantum Mechanics. Moscow, “Mir”, 1968. 

8. Petrashen’, M. I. and Trifonov, E. D. , Application ofGroup Theory in 

Quantum Mechanics. Moscow, “Nauka”, 1967. 

9. Tobias, S. A., A theory of imperfection for the vibrations of elastic bodies of 

revolution. Engineering, Vol. 172, N’4470. 1951. 

10. Tyndall. J., Sound. London, Longmans, Green and Co., 1867. 
11. Watkins, J. D. and Clary, R, R. , Vibrational characteristics of thin-wall 

conical frustum shells. AIAA J. Vol. 2, N?lO, 1964. 
12. H u, W, C , L. , Comments on vibrational characteristics of thin-wall conical frus- 

tum shells. AIAA J. Vol. 3. N%, 1965. 
13. Watkins, J. D. and Clary, R, R, , Reply by authors to W. C. L. Hu. AIAA 

J. Vol.3, N’6, 1965. 

14. Koval, L. R., Note on the vibrational characteristics of thin-walled shells. 
AIAA J. Vol.4, N?3, 1966. 

15. Sal’nikov, G. M., On the natural vibrations of conical frustum shells with 
free edges. Prikl. Mekh. Vol. 5. Nsl, 1969. 

16. Fliigge. W., Schwingungen zylindrischer Schallen. ZAMM Bd. 13, No6, 1933. 

Translated by M. D. F. 


